
ENDVERSCHLÜSSE UND MUFFEN FÜR VPE-ISOLIERTE MITTELSPANNUNGSKABEL 12-36 kV

PRÜFWERTE FÜR ENDVERSCHLÜSSE 1)

Prüfung nach DIN VDE 0278-629-1		Prüfwerte für S	pannungsreihe		Prüfanforderungen	
(Prüfverfahren nach EN 61442)	U _o /U U _m	6/10 12	12/20 24	18/30 36		
Gleichspannung, trocken	kV	36	72	108	15 min bei 6 U ₀ ,weder Ausfall noch Überschlag	
Wechselspannung, trocken	kV	27	54	81	5 min bei 4,5 U ₀ , weder Ausfall noch Überschlag	
Wechselspannung, nass ²⁾	kV	24	48	72	1 min bei 4 U ₀ , weder Ausfall noch Überschlag	
Teilentladung bei Umgebungstemperatur	kV	12	24	36	max. 10 pC bei 1,73 U ₀	
Stoßspannung bei erhöhter Temperatur	kV	75	125	170	10 Stöße bei jeder Polarität, weder Ausfall noch Überschlag	
Elektrische Heizzyklen in Luft	kV	15	30	45	126 Zyklen bei 2,5 U ₀ , kein Ausfall	
Prüfung im Wasserbad ²⁾	kV	12	24	36	10 Zyklen	
Teilentladung bei Umgebungstemperatur und erhöhter Temperatur	kV	12	24	36	max. 10 pC bei 1,73 U ₀	
Thermischer Kurzschluss (Schirm)		nach EN 6144	2 Abschnitt 10		2 Kurzschlüsse bei I _{sc} , kein Ausfall	
Thermischer Kurzschluss (Leiter)		nach EN 6144	2 Abschnitt 11		2 Kurzschlüsse zur Erhöhung der Leitertemperatur auf Θ _{sc} , kein Ausfall	
Dynamischer Kurzschluss		nach Vere	einbarung		1 Kurzschluss bei I _d , kein Ausfall	
Stoßspannung bei Umgebungstemperatur	kV	75	125	170	10 Stöße bei jeder Polarität, weder Ausfall noch Überschlag	
Wechselspannung, trocken	kV	15	30	45	15 min bei 2,5 U ₀ , weder Ausfall noch Überschlag	
Salznebel ²⁾	kV	7,5	15	22,5	Dauer: 1000 h bei 1,25 U ₀	
Luftfeuchte 3)	kV	7,5	15	22,5	Dauer: 300 h bei 1,25 U ₀	

Auszug von Prüfwerten für Standard Spannungsreihen
 gilt nur für Freiluftendverschlüsse

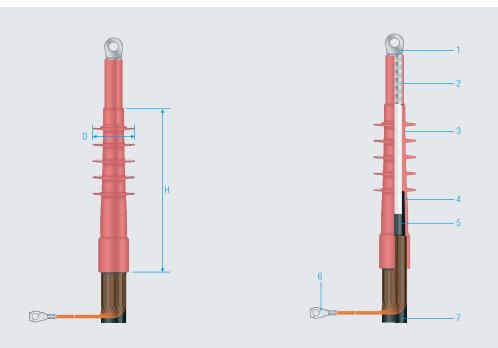
INHALT

Garniturentechnik mit System

Seit mehr als 40 Jahren hat Südkabel Erfahrung mit dem Einsatz von Silikonkautschuk in der Garniturenfertigung bis 550 kV. Diese Erfahrung ist ein wichtiger Garant für Qualität auch im Bereich für Endverschlüsse und Muffen für VPE-isolierte Mittelspannungskabel 12 – 36 kV. Durch den Einsatz vorgefertigter Isolierkörper wird von Anfang an sichergestellt, dass kritische Montageschritte wie das Herstellen der Feldsteuerung oder der Isolierung von der Baustelle in die Fertigung verlagert wurden.

Das Standardprogramm der Südkabel an Mittelspannungsgarnituren für VPE-isolierte Mittelspannungskabel wie Steckendverschlüsse für gekapselte Schaltanlagen mit Innen- oder Außenkonus, Mehrbereichs-Verbindungs- und -Übergangsmuffen wird durch Mehrbereich-Endverschlüsse für Innenraum und Freiluft sowie Endverschlüsse für Elektrofilterkabel abgerundet. Unsere Mittelspannungsgarnituren sind auch für Netze oder Anwendungen bis 42 kV mit erhöhten Prüfanforderungen zugelassen.

Prüfwerte für Endverschlüsse 2
Willkommen bei Südkabel3
Endverschlüsse4-7
Innenraum-Endverschlüsse
Freiluft-Endverschlüsse
Endverschluss für Elektrofilterkabel 111 kV _s
Garniturenzubehör für Innenraum- und Freiluftendverschlüsse _
Verbindungs- und Übergangsmuffen $_$ 8-10
Garniturenzubehör für Endverschlüsse und Verbindungs- und Übergangsmuffen 1
Lincor Angobot


INNENRAUM-ENDVERSCHLÜSSE

MEHRBEREICHS-ENDVERSCHLÜSSE 12-36 kV

Innenraum-Endverschlüsse werden in Aufschiebetechnik aus Silikonkautschuk auf Kabel mit einer Isolierung aus vernetztem Polyethylen (VPE) eingesetzt. Verschiedene Optimierungsschritte haben zu den heute bei 12 und 24 kV gebräuchlichen Mehrbereichs-Endverschlüssen geführt. Dies sind Endverschlüsse, die mit einer Größe des Isolierkörpers bis zu fünf Leiterquerschnitte abdecken und dabei den Einsatz sowohl von Presskabelschuhen als auch von Schraubkabelschuhen erlauben. Der eingesetzte Werkstoff für den Isolierkörper weist einen relativ geringen Wert der Shore-A-Härte auf. Dadurch wird eine gute Anpassung an Unebenheiten der VPE-Kabelader, wie sie bspw. beim Abschälen der festverschweißten äußeren Leitschicht entstehen, erreicht. Eine Nachbehandlung der geschälten Ader ist damit nicht mehr notwendig.

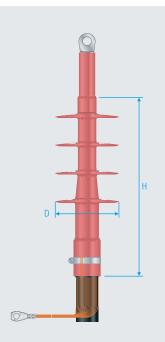
Die Innenraum-Endverschlüsse übertreffen die Anforderungen der DIN VDE 0278-629-1 mit deutlichem Abstand. Bei Einsatz auf Dreileiterkabel ist eine Aufteilung erforderlich.

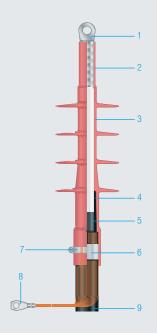
Für die Befestigung der Kabel stehen spezielle Kabelschellen zur Verfügung.

- 1 Kabelschuh für Leiterverbindung
- 2 Abdichtschlauch
- 3 Isolierkörper
- 4 Feldsteuerelement
- 5 Äußere Leitschicht
- 6 Schirmkabelschuh 7 Außenmantel

Тур	zulässiger Aderdurchmesser mm	Maß H mm	Maß D mm	Leiterquerschnitt * ⁾ mm²
SEHDI 10.2	13,3 – 20,8	205	46	35 – 95
SEI 12	16,8 – 24,3	205	50	70 – 150
SEI 12	21,5 - 32,6	205	54	185 – 300
SEHDI 10.2	26,5 - 40,9	205	46	300 – 630
SEI 24	16,8 – 24,3	205	50	25 – 70
SEI 24	21,5 - 32,6	205	54	95 – 240
SEHDI 20.2	30,0 - 45,0	215	69	300 – 630
SEHDI 30.1	22,9 - 27,8	270	77	35 – 50
SEHDI 30.1	25,1 - 30,5	270	77	70 – 95
SEHDI 30.1	28,3 - 34,4	270	77	120 – 150
SEHDI 30.1	31,5 – 38,3	270	83	185 – 240
SEHDI 30.1	35,6 - 43,3	270	83	300 – 400
SEHDI 30.1	42,2 - 50,1	270	88	500 - 630

[&]quot;) für Kabel nach DIN VDE 0276-620

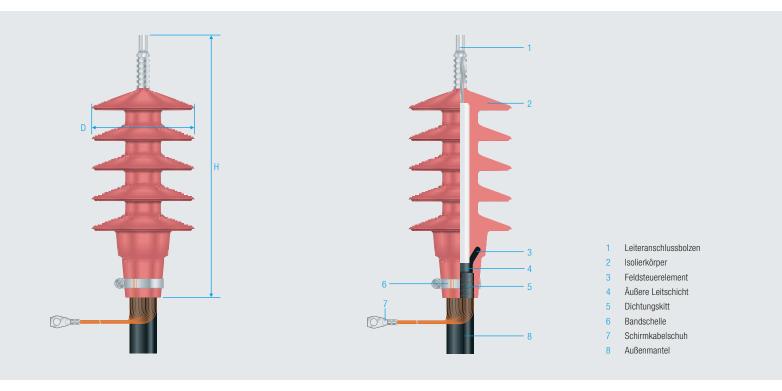

FREILUFT-ENDVERSCHLÜSSE


MEHRBEREICHS-ENDVERSCHLÜSSE 12-36 kV

Freiluft-Endverschlüsse werden in Aufschiebetechnik aus Silikonkautschuk auf Kabel mit einer Isolierung aus vernetztem Polyethylen (VPE) eingesetzt. Verschiedene Optimierungsschritte haben zu den heute bei 12 und 24 kV gebräuchlichen Mehrbereichs-Endverschlüssen geführt. Dies sind Endverschlüsse, die mit einer Größe des Isolierkörpers bis zu fünf Leiterquerschnitte abdecken und dabei den Einsatz sowohl von Presskabelschuhen als auch von Schraubkabelschuhen erlauben. Der eingesetzte Werkstoff für den Isolierkörper weist einen relativ geringen Wert der Shore-A-Härte auf. Dadurch wird eine gute Anpassung an Unebenheiten der VPE-Kabelader, wie sie bspw. beim Abschälen der festverschweißten äußeren Leitschicht entstehen, erreicht. Eine Nachbehandlung der geschälten Ader ist damit nicht mehr notwendig.

Die Freiluft-Endverschlüsse übertreffen die Anforderungen der DIN VDE 0278-629-1 mit deutlichem Abstand. Bei Einsatz auf Dreileiterkabel ist eine Aufteilung erforderlich.

Für die Befestigung an Masttraversen oder Gerüsten stehen spezielle Befestigungsschellen zur Verfügung.

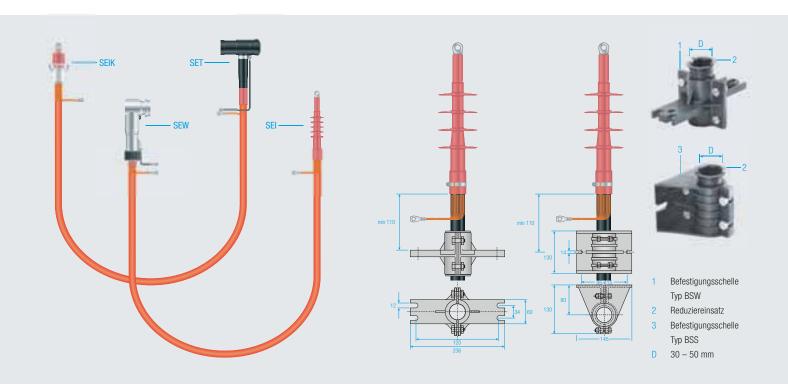

- Kabelschuh für Leiterverbindung
- 2 Abdichtschlauch
- 3 Isolierkörper
- 4 Feldsteuerelement
- 5 Äußere Leitschicht
- 6 Dichtungskitt
- 7 Bandschelle
- 8 Schirmkabelschuh
- 9 Außenmantel

Тур	zulässiger Aderdurchmesser mm	Maß H mm	Maß D mm	Leiterquerschnitt *) mm²
SEHDF 10.2	13,3 – 20,8	225	105	35 – 70
SEHDF 10.2	16,8 – 24,3	260	88	95 – 150
SEF 12	21,5 - 32,6	260	92	185 – 300
SEHDF 10.2	30,0 - 45,0	22	120	400 – 630
SEHDF 20.2	16,8 – 24,3	260	88	25 – 70
SEF 24	21,5 - 32,6	260	92	95 – 240
SEHDF 20.2	30,0 - 45,0	225	120	300 – 630
SEHDF 30.1	22,9 - 27,8	380	133	35 – 50
SEHDF 30.1	25,1 - 30,5	380	133	70 – 95
SEHDF 30.1	28,3 - 34,4	380	138	120 – 150
SEHDF 30.1	31,5 – 38,3	380	138	185 – 240
SEHDF 30.1	35,6 - 43,3	380	144	300 – 400
SEHDF 30.1	41,2 - 50,1	380	151	500 – 630

[&]quot;) für Kabel nach DIN VDE 0276-620

ENDVERSCHLUSS FÜR ELEKTROFILTERKABEL 111 k $V_{\rm S}$

Der Elektrofilterkabel-Endverschluss ist speziell für den Einsatz auf Elektrofilterkabel des Typs A2XSY 1x50RM/16 111 k V_s ausgelegt und entspricht den besonderen Anforderungen von Elektrofilteranlagen.


Funktionsweise

Bauteile von Elektrofilteranlagen werden in elektrischer Hinsicht impulsförmigen Beanspruchungen unterworfen. Die Spannung steigt nach der Aufladekurve eines Kondensators an, um dann nach dem Spannungs-überschlag im Filter schlagartig zusammenzubrechen. Danach beginnt der Aufladevorgang von neuem.

Тур	Bohrungsdurchmesser des Isolierkörpers	zulässiger Aderdurchmesser	Мав Н	Мав D	Leiterquerschnitt
	mm	mm	mm	mm	mm²
SEHDL	23,5	25,5 - 30,0	425	170	50
SEHDL	31,3	33,5 - 38,5	425	170	50

GARNITURENZUBEHÖR FÜR INNENRAUM- UND FREILUFTENDVERSCHLÜSSE

Konfektionierte Kabel- und Trossenbrücken sind werkseitig mit Endverschlüssen bestückte einbaufertige Verbindungen mit VPE-isolierten Kabeln oder flexiblen EPR-isolierten Leitungstrossen. Sie werden vorwiegend für Verbindungen zwischen Transformatoren und Schaltanlagen bzw. für Spezialanwendungen, z. B. in E-Loks eingesetzt.

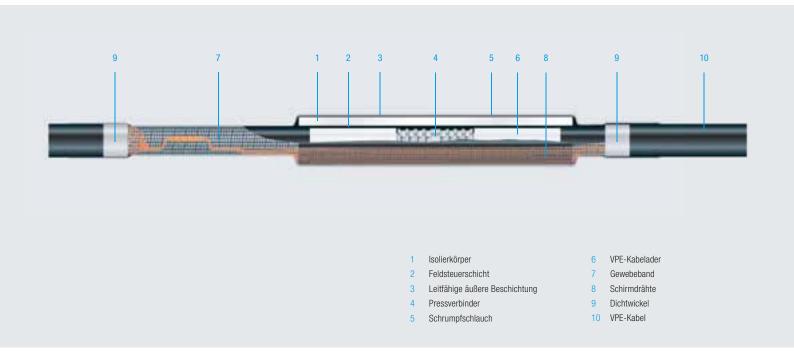
Konfektionierte Kabel- und Trossenbrücken 12 - 36 kV

- Minimaler Biegeradius der flexiblen Trossenleitung ermöglicht die Verwendung unter beengten Verhältnissen.
- Rationalisierung im Stationsbau durch Einsparen der Endverschlussmontage am Einbauort.
- Beliebige Bestückung der Brücken bei Kombination aller für die Bauart der Kabel oder Trossen zugelassenen Endverschlüsse und Stecker.
- Ausgangsprüfungen nach Vereinbarung.

Тур	Zulässige Strom- belastbarkeit ^{*)} A	Kurz- schluss- strom 1 s	Außen- durch- messer mm	Mindest- biege- radius mm
Leitungstrosse 24 kV				
NTMCW0EU 35 mm ²	240	5	29,5	145
NTMCW0EU 50 mm ²	300	7,2	31,5	155
Kabel 24 kV				
N2XSY 35 mm ²	235	5	30	450
N2XSY 50 mm ²	282	7,2	34	550

[&]quot;) Verlegung in Luft, Umgebungstemperatur 30 °C

Befestigungsschellen für Freiluft-Endverschlüsse


Freiluft-Endverschlüsse können nur in sehr begrenztem Umfang Quer-kräfte aufnehmen. Mechanische Beanspruchungen wie sie z. B. infolge von Kurzschlüssen und Seilschwingungen, aber auch durch Eigensteifigkeit des Kabels auftreten, können über eine geeignete Befestigungsschelle beherrscht werden. Die speziell für den Einsatz mit Freiluft-Endverschlüssen SEHDF konzipierten Befestigungsschellen Typ BSW (für waagrechte Befestigung) und BSS (für senkrechte Befestigung) sind aus glasfaserverstärktem UV-beständigem Polyamid gefertigt. Sie zeichnen sich durch eine große Einspannlänge von 100 mm aus, die eine optimale Befestigung gewährleistet ohne den zulässigen Flächendruck des Kabels zu überschreiten. Eine Anpassung an den jeweiligen Kabel-Außendurchmesser ist durch verschiedene Reduzierstücke möglich.

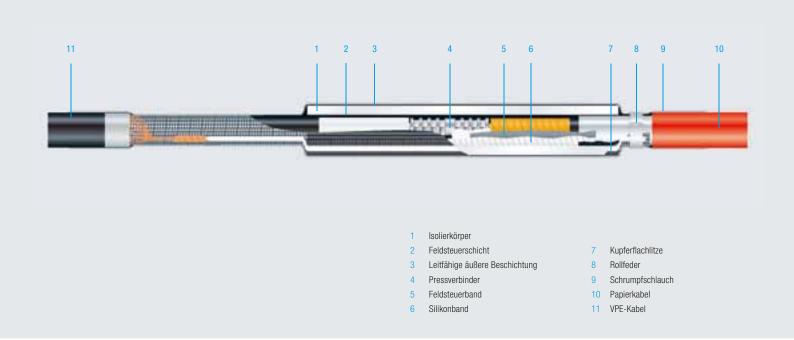
Die Befestigungsschellen können für alle gebräuchlichen Befestigungsmaße in jeweils 5 mm Abstufungen an Konsolen eingesetzt werden. Durch verschiedene Reduziereinsätze ist eine Anpassung an den jeweiligen Kabelaußendurchmesser möglich.

VERBINDUNGS- UND ÜBERGANGSMUFFEN

VERBINDUNGSMUFFEN 12-36 kV

Die Verbindungsmuffe SEV in Aufschiebetechnik dient zur Verbindung zweier Kunststoffkabel 12, 24 oder 36 kV.

Die Mehrbereichsfähigkeit erlaubt den Einsatz von bis zu fünf Querschnitten mit einer Isolierkörpergröße. Der einteilige dreifach extrudierte Isolierkörper aus Silikonkautschuk besteht aus einer refraktiven Feldsteuerung, Silikonisolierung und leitfähigen äußeren Schicht. Die Leiterverbindung kann sowohl mit Pressverbindern als auch mit Schraubverbindern vorgenommen werden. Verbindungen innerhalb einer Muffengröße ist problemlos möglich. Die metallische Abschirmung der Muffe erfolgt über einen Wickel aus Kupfergewebeband. Der äußere mechanische Schutz wird standardmäßig von einem Warmschrumpfschlauch übernommen. Als Option kann hierfür auch ein Korrosionsschutzband eingesetzt werden.


Die Mehrbereichsmuffe SEV entspricht den Anforderungen der DIN VDE 0278-629-1.

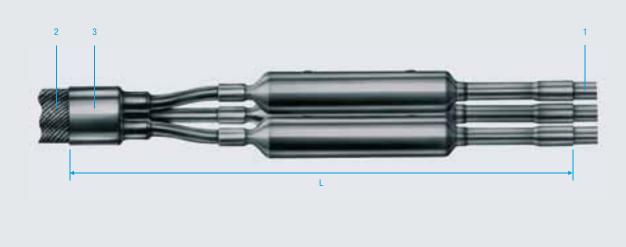
Тур	Spannung U _{max} kV	Leiterquerschnitt mm²	zulässiger Aderdurchmesser mm
SEV 12	12	50 – 95	15,5 – 20,8
SEV 12	12	120 – 240	18,9 – 28,4
SEV 12	12	300 – 500	27,4 - 36,4
SEV 24	24	50 – 150	18,9 – 28,0
SEV 24	24	95 – 240	22,8 - 32,6
SEV 24	24	240 – 400	29,5 - 39,6
SEV 24	24	300 – 500	30,9 - 40,9
SEV 24	24	630	39,1 – 50,1
SEV 24	24	800 – 1000	44,6 – 57,8
SEV 36	36	50 – 120	23,5 - 32,5
SEV 36	36	150 – 300	29,5 - 39,6
SEV 36	36	800 – 1000	44,6 – 57,8

VERBINDUNGS- UND ÜBERGANGSMUFFEN

ÜBERGANGSMUFFEN 24 kV

Die Übergangsmuffe SEVü in Aufschiebetechnik dient zur Verbindung eines papierisolierten Kabels mit einem Kunststoffkabel.

Die SEVü entspricht größtenteils der SEV und deren Vorteile (Mehrbereichsfähigkeit, Einsatz von Press- und Schraubverbindern). Es werden lediglich zusätzliche Montageschritte auf der papierisolierten Kabelseite notwendig. Die Papierkabelseite wird mit Bändern so vorbereitet, dass keine Tränkmasse aus den Papieren an den Isolierkörper gelangen kann. Hier spricht man von der Technologie einer "trockenen" Übergangsmuffe. Bei Verbindung von VPE-Kabeln mit papierisolierten Einleiterkabeln bildet ein Schrumpfschlauch den äußeren mechanischen Schutz. — SEVü. Bei Einsatz auf papierisolierten Dreileiterkabeln wird das Kabel mit einer Aufteilkappe in drei Einzeladern aufgeteilt und kann dann als Einleiterkabel behandelt werden. — AM/SEVü.


Die Übergangsmuffe SEVü 24 entspricht den Anforderungen der DIN VDE 0278-629-2.

Тур	Spannung	Zur Verbindung von einadrigen VPE-Kabeln	Leiterqu	zulässiger Aderdurchmesser	
	kV	und papierisolierten	Papierkabel mm²	VPE-Kabel mm²	mm
SEVü 24	24	einadrigen Kabeln	35 – 150	50 – 150	18,9 - 22,0
AM/SEVü-B24	24	Dreibleimatelkabeln	35 – 240	95 – 240	22,8 - 32,6
			185 – 300	300	30,9 - 40,9
AM/SEVü-H24	24	Höchstätter Kabeln	35 – 150	50 – 150	17,5 – 25,0
			35 – 240	95 – 240	

VERBINDUNGS- UND ÜBERGANGSMUFFEN

ÜBERGANGSMUFFEN 24 kV

Die Übergangsmuffe SEHDVü in Aufschiebetechnik dient zur Verbindung eines papierisolierten Kabels mit einem Kunststoffkabel.

- VPE-Kabel
- 2 Hochstätter- bzw. Dreibleimantelkabel
- Schrumpfaufteilung "AM"

Der einteilige Isolierkörper aus Silikonkautschuk beinhaltet die Feldsteuerelemente sowie ein Massereservoir, das die Masseversorgung des papierisolierten Kabels im Muffennahbereich gewährleistet. Hier spricht man von der Technologie einer "nassen" Übergangsmuffe. Die werkseitig vorgefertigten Aufbauelemente Isolierkörper, Dichtteil und Muffenrohr gestatten eine einfache und sehr schnelle lötfreie Montage. Bei Verbindung von VPE-Kabeln mit papierisolierten Einleiterkabeln bildet ein Schrumpfschlauch den äußeren mechanischen Schutz. — SEHDVü. Bei Einsatz auf papierisolierten Dreileiterkabeln wird das Kabel mit einer Aufteilkappe in drei Einzeladern aufgeteilt und kann dann als Einleiterkabel behandelt werden. — AM/SEHDVü.

Die Übergangsmuffe SEHDVü 20 entspricht den Anforderungen der DIN VDE 0278-629-2.

Тур	Leiterqu	Länge Maß L	
	VPE-Kabel mm²	Massekabel mm²	ca. mm
SEHDVü 20	95	35 – 95	1000
SEDVü 20	120	50 – 120	1000
SEHDVü 20	150	70 – 150	1000
SEHDVü 20	185	95 – 185	1000
SEHDVü 20	240	120 – 240	1000
AM/SEHDVü 20	95	35 – 95	1400
AM/SEHDVü 20	120	50 – 120	1400
AM/SEHDVü 20	150	70 – 150	1400
AM/SEHDVü 20	185	95 – 185	1400
AM/SEHDVü 20	240	120 – 240	1400

GARNITURENZUBEHÖR FÜR ENDVERSCHLÜSSE UND VERBINDUNGS- UND ÜBERGANGSMUFFEN

Kabelschellen aus Polyamid zur Befestigung von Ein- und Mehrleiterkabeln. Kabelschellen aus glasfaserverstärktem Polyamid dienen zur sicheren Befestigung von Kabeln an Mastaufführungen, in Stationen und in Kabelkanälen.

Тур К

(mechanische Kurzschlussfestigkeit $10.000\ N$) zur Befestigung von Einund Mehrleiterkabeln.

Typ KP

(mechanische Kurzschlussfestigkeit 25.000 N) zur Befestigung von Einleiterkabeln im Dreiecksverband bei erhöhter Kurzschlussbeanspruchung.

Typ KS

(mechanische Kurzschlussfestigkeit 12.500 N) zur Befestigung von Einleiterkabeln im Dreiecksverband.

Mantelschneider WM 20.1

Der Mantelschneider dient zum Absetzen von PE-Außenmänteln und VPE-Isolierungen an Mittelspannungskabeln.

Schälgerät WL 20.1

Das Schälgerät dient zum Entfernen der festverschweißten äußeren Leitschicht bei VPE-Mittelspannungskabeln.

Weiteres Zubehör

Produkte zur Kabelmontage und -verlegung:

- Erdungsmaterial f
 ür Kabel mit Kupferbandschirm
- Schrumpfaufteilung für Dreileiter-VPE-Kabel
- Kabelreiniger RUK500 zum Reinigen von Kabelmänteln und -isolierungen
- Kabelbündelband zur kurzschlussfesten Bündelung von Einleiterkabeln

Тур	K26/38	K36/52	K50/75	K66/90	KP29/41	KP39/53	KS26/36	KS33/46
geeignet für Kabeldurch- messer in mm	26 – 38	36 – 52	50 – 75	66 – 90	29 – 41	39 – 53	25 – 36	33 – 46
Maß L ₁	90	105	126	158	172	190	150	170
Maß L ₂	60	75	95	120	125	145	110	130
Мав В	60	60	60	70	80	80	80	80
Maß D	12	12	12	14	14	14	12	12

UNSER ANGEBOT

Kabel

VPE-isolierte Kabel von 6 kV bis 500 kV

Garnituren für Mittel-, Hoch- und Höchstspannung

- Freiluftendverschlüsse
- Konventionelle und steckbare Einbauendverschlüsse für SF₆-Schaltanlagen und Transformatoren
- Verbindungsmuffen
- Steckendverschlüsse für Außen- und Innenkonussysteme
- Kabelbrücken für Mittelspannung
- Garnituren für Elektrofilterkabel

Kabelsysteme

Schlüsselfertige VPE-Kabelanlagen bis 500 kV

Dienstleistungen

- Beratung in anwendungstechnischen Fragen
- Monteurschulungen
- · Kabelverlegung und Verlegeaufsicht
- Garniturenmontage
- Störungsdienst

Hinweis

Technische Änderungen der Produkte sowie Änderungen im Inhalt dieses Dokuments behalten wir uns jederzeit ohne Vorankündigung vor. Bei Bestellungen sind die jeweils vereinbarten Beschaffenheiten maßgebend. Die Südkabel GmbH übernimmt keinerlei Verantwortung für eventuelle Fehler oder Unvollständigkeiten in diesem Dokument. Wir behalten uns alle Rechte an diesem Dokument und den darin enthaltenen Gegenständen und Abbildungen vor. Vervielfättigung, Bekanntgabe an Dritte oder Verwertung seines Inhaltes – auch von Teilen – ist ohne vorherige schriftliche Zustimmung durch die Südkabel GmbH verboten.

Copyright © 2014 Südkabel. Alle Rechte vorbehalten.

Südkabel GmbH

Rhenaniastraße 12-30 | 68199 Mannheim Tel.: +49 621 8507 01 | Fax: +49 621 8507 294

E-Mail: info@suedkabel.com

SÜDKABEL